Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Pathogens ; 12(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38133289

RESUMO

Enteric viruses are the major cause of gastroenteritis and enteric hepatitis worldwide, but in some areas like Saudi Arabia, little is known about their presence in water sources. The available information from clinical samples is not enough to figure out their actual prevalence. The aim of this study was to gather information for the first time in Saudi Arabia on the presence of the Norovirus (NoV) genogroup GI and GII, hepatitis A virus (HAV), and hepatitis E virus (HEV) in water. For this purpose, thirteen monthly samples were collected from Lake Wadi Hanifa and surrounding wells from December 2014 to November 2015. Viruses were detected and quantified using real-time RT-qPCR. Despite HEV findings being anecdotic, our results highlight interesting behaviors of the other viruses. There was a higher prevalence of noroviruses in Wadi Hanifa samples than in well water samples (46.43% vs. 12.5% of NoV GI; 66.67% vs. 8.33% of NoV GII). On the contrary, similar levels of HAV positivity were observed (40.48% in surface water vs. 43.06% in well water). Also, a strong influence of flooding events on HAV and NoV GI occurrence was observed in both surface and well water samples, with NoV GII apparently not affected.

2.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139015

RESUMO

Shortly after the beginning of the SARS-CoV-2 pandemic, many countries implemented sewage sentinel systems to monitor the circulation of the virus in the population. A fundamental part of these surveillance programs is the variant tracking through sequencing approaches to monitor and identify new variants or mutations that may be of importance. Two of the main sequencing platforms are Illumina and Oxford Nanopore Technologies. Here, we compare the performance of MiSeq (Illumina) and MinION (Oxford Nanopore Technologies), as well as two different data processing pipelines, to determine the effect they may have on the results. MiSeq showed higher sequencing coverage, lower error rate, and better capacity to detect and accurately estimate variant abundances than MinION R9.4.1 flow cell data. The use of different variant callers (LoFreq and iVar) and approaches to calculate the variant proportions had a remarkable impact on the results generated from wastewater samples. Freyja, coupled with iVar, may be more sensitive and accurate than LoFreq, especially with MinION data, but it comes at the cost of having a higher error rate. The analysis of MinION R10.4.1 flow cell data using Freyja combined with iVar narrows the gap with MiSeq performance in terms of read quality, accuracy, sensitivity, and number of detected mutations. Although MiSeq should still be considered as the standard method for SARS-CoV-2 variant tracking, MinION's versatility and rapid turnaround time may represent a clear advantage during the ongoing pandemic.


Assuntos
COVID-19 , Nanoporos , Humanos , SARS-CoV-2/genética , Águas Residuárias , COVID-19/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos
3.
Water Res ; 242: 120223, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37354838

RESUMO

Here we analyze SARS-CoV-2 genome copies in Catalonia's wastewater during the Omicron peak and develop a mathematical model to estimate the number of infections and the temporal relationship between reported and unreported cases. 1-liter samples from 16 wastewater treatment plants were collected and used in a compartmental epidemiological model. The average correlation between genome copies and reported cases was 0.85, with an average delay of 8.8 days. The model estimated that 53% of the population was infected, compared to the 19% reported cases. The under-reporting was highest in November and December 2021. The maximum genome copies shed in feces by an infected individual was estimated to range from 1.4×108 gc/g to 4.4×108 gc/g. Our framework demonstrates the potential of wastewater data as a leading indicator for daily new infections, particularly in contexts with low detection rates. It also serves as a complementary tool for prevalence estimation and offers a general approach for integrating wastewater data into compartmental models.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Prevalência , SARS-CoV-2 , Águas Residuárias , Viés , Testes Diagnósticos de Rotina , RNA Viral , Teste para COVID-19
4.
Sci Total Environ ; 892: 164495, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37245831

RESUMO

Wastewater-based surveillance can be a valuable tool to monitor viral circulation and serve as an early warning system. For respiratory viruses that share similar clinical symptoms, namely SARS-CoV-2, influenza, and respiratory syncytial virus (RSV), identification in wastewater may allow differentiation between seasonal outbreaks and COVID-19 peaks. In this study, to monitor these viruses as well as standard indicators of fecal contamination, a weekly sampling campaign was carried out for 15 months (from September 2021 to November 2022) in two wastewater treatment plants that serve the entire population of Barcelona (Spain). Samples were concentrated by the aluminum hydroxide adsorption-precipitation method and then analyzed by RNA extraction and RT-qPCR. All samples were positive for SARS-CoV-2, while the positivity rates for influenza virus and RSV were significantly lower (10.65 % for influenza A (IAV), 0.82 % for influenza B (IBV), 37.70 % for RSV-A and 34.43 % for RSV-B). Gene copy concentrations of SARS-CoV-2 were often approximately 1 to 2 logarithmic units higher compared to the other respiratory viruses. Clear peaks of IAV H3:N2 in February and March 2022 and RSV in winter 2021 were observed, which matched the chronological incidence of infections recorded in the Catalan Government clinical database. In conclusion, the data obtained from wastewater surveillance provided new information on the abundance of respiratory viruses in the Barcelona area and correlated favorably with clinical data.


Assuntos
COVID-19 , Influenza Humana , Infecções por Vírus Respiratório Sincicial , Vírus , Humanos , Influenza Humana/epidemiologia , Vírus Sinciciais Respiratórios/genética , Águas Residuárias , COVID-19/epidemiologia , SARS-CoV-2 , Vigilância Epidemiológica Baseada em Águas Residuárias , Infecções por Vírus Respiratório Sincicial/epidemiologia
5.
Microbiol Spectr ; 11(1): e0466422, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36695578

RESUMO

The pathogenic mechanisms determining the diverse clinical outcomes of HEV infection (e.g., self-limiting versus chronic or symptomatic versus asymptomatic) are not yet understood. Because specific microRNA signatures during viral infection inform the cellular processes involved in virus replication and pathogenesis, we investigated plasma microRNA profiles in 44 subjects, including patients with symptomatic acute (AHE, n = 7) and chronic (CHE, n = 6) hepatitis E, blood donors with asymptomatic infection (HEV BDs, n = 9), and anti-HEV IgG+ IgM- (exposed BDs, n = 10) and anti-HEV IgG- IgM- (naive BDs, n = 12) healthy blood donors. By measuring the abundance of 179 microRNAs in AHE patients and naive BDs by reverse transcription-quantitative PCR (RT-qPCR), we identified 51 potential HEV-regulated microRNAs (P value adjusted for multiple testing by the Benjamini-Hochberg correction [PBH] < 0.05). Further analysis showed that HEV genotype 3 infection is associated with miR-122, miR-194, miR-885, and miR-30a upregulation and miR-221, miR-223, and miR-27a downregulation. AHE patients showed significantly higher levels of miR-122 and miR-194 and lower levels of miR-221, miR-27a, and miR-335 than HEV BDs. This specific microRNA signature in AHE could promote virus replication and reduce antiviral immune responses, contributing to the development of clinical symptoms. We found that miR-194, miR-335, and miR-221 can discriminate between asymptomatic HEV infections and those developing acute symptoms, whereas miR-335 correctly classifies AHE and CHE patients. Our data suggest that diverse outcomes of HEV infection result from different HEV-induced microRNA dysregulations. The specific microRNA signatures described offer novel information that may serve to develop biomarkers of HEV infection outcomes and improve our understanding of HEV pathogenesis, which may facilitate the identification of antiviral targets. IMPORTANCE There is increasing evidence that viruses dysregulate the expression and/or secretion of microRNAs to promote viral replication, immune evasion, and pathogenesis. In this study, we evaluated the change in microRNA abundance in patients with acute or chronic HEV infection and asymptomatic HEV-infected blood donors. Our results suggest that different HEV-induced microRNA dysregulations may contribute to the diverse clinical manifestations of HEV infection. The specific microRNA signatures identified in this study hold potential as predictive markers of HEV infection outcomes, which would improve the clinical management of hepatitis E patients, particularly of those developing severe symptoms or chronic infections. Furthermore, this study provides new insights into HEV pathogenesis that may serve to identify antiviral targets, which would have a major impact because no effective treatments are yet available.


Assuntos
Vírus da Hepatite E , Hepatite E , MicroRNAs , Humanos , Hepatite E/diagnóstico , Vírus da Hepatite E/genética , MicroRNAs/genética , Imunoglobulina G , Imunoglobulina M , Antivirais
6.
Water Res ; 231: 119621, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693290

RESUMO

Besides nasopharyngeal swabs, monkeypox virus (MPXV) DNA has been detected in a variety of samples such as saliva, semen, urine and fecal samples. Using the environmental surveillance network previously developed in Spain for the routine wastewater surveillance of SARS-CoV-2 (VATar COVID-19), we have analyzed the presence of MPXV DNA in wastewater from different areas of Spain. Samples (n = 312) from 24 different wastewater treatment plants were obtained between May 9 (week 19 of 2022) and August 4 (week 31 of 2022). Following concentration of viral particles by a validated aluminum adsorption-precipitation method, a qPCR procedure allowed us to detect MPXV DNA in 56 wastewater samples collected from May 16 to August 4, 2022, with values ranging between 2.2 × 103 to 8.7 × 104 genome copies (gc)/L. This study shows that MPXV DNA can be reproducibly detected by qPCR in longitudinal samples collected from different Spanish wastewater treatment plants. According to data from the National Epidemiological Surveillance Network (RENAVE) in Spain a total of 6,119 cases have been confirmed as of August 19, 2022. However, and based on the wastewater data, the reported clinical cases seem to be underestimated and asymptomatic infections may be more frequent than expected.


Assuntos
COVID-19 , Vírus da Varíola dos Macacos , Humanos , SARS-CoV-2 , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , DNA , RNA Viral
7.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36498981

RESUMO

The changes occurring in viral quasispecies populations during infection have been monitored using diversity indices, nucleotide diversity, and several other indices to summarize the quasispecies structure in a single value. In this study, we present a method to partition quasispecies haplotypes into four fractions according to their fitness: the master haplotype, rare haplotypes at two levels (those present at <0.1%, and those at 0.1−1%), and a fourth fraction that we term emerging haplotypes, present at frequencies >1%, but less than that of the master haplotype. We propose that by determining the changes occurring in the volume of the four quasispecies fitness fractions together with those of the Hill number profile we will be able to visualize and analyze the molecular changes in the composition of a quasispecies with time. To develop this concept, we used three data sets: a technical clone of the complete SARS-CoV-2 spike gene, a subset of data previously used in a study of rare haplotypes, and data from a clinical follow-up study of a patient chronically infected with HEV and treated with ribavirin. The viral response to ribavirin mutagenic treatment was selection of a rich set of synonymous haplotypes. The mutation spectrum was very complex at the nucleotide level, but at the protein (phenotypic/functional) level the pattern differed, showing a highly prevalent master phenotype. We discuss the putative implications of this observation in relation to mutagenic antiviral treatment.


Assuntos
Vírus da Hepatite E , Hepatite E , Ribavirina , Humanos , Seguimentos , Mutagênicos , Nucleotídeos , Quase-Espécies/genética , Ribavirina/uso terapêutico , SARS-CoV-2/genética , Hepatite E/tratamento farmacológico , Vírus da Hepatite E/efeitos dos fármacos , Vírus da Hepatite E/genética
8.
Sci Rep ; 12(1): 16704, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202959

RESUMO

Wastewater-based epidemiology has shown to be an efficient tool to track the circulation of SARS-CoV-2 in communities assisted by wastewater treatment plants (WWTPs). The challenge comes when this approach is employed to help Health authorities in their decision-making. Here, we describe the roadmap for the design and deployment of SARSAIGUA, the Catalan Surveillance Network of SARS-CoV-2 in Sewage. The network monitors, weekly or biweekly, 56 WWTPs evenly distributed across the territory and serving 6 M inhabitants (80% of the Catalan population). Each week, samples from 45 WWTPs are collected, analyzed, results reported to Health authorities, and finally published within less than 72 h in an online dashboard ( https://sarsaigua.icra.cat ). After 20 months of monitoring (July 20-March 22), the standardized viral load (gene copies/day) in all the WWTPs monitored fairly matched the cumulative number of COVID-19 cases along the successive pandemic waves, showing a good fit with the diagnosed cases in the served municipalities (Spearman Rho = 0.69). Here we describe the roadmap of the design and deployment of SARSAIGUA while providing several open-access tools for the management and visualization of the surveillance data.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Pandemias , RNA Viral , Esgotos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
9.
Viruses ; 14(3)2022 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-35336893

RESUMO

Molecular characterization of human norovirus (HuNoV) genotypes enhances the understanding of viral features and illustrates distinctive evolutionary patterns. The aim of our study was to describe the prevalence of the genetic diversity and the epidemiology of the genotypes involved in HuNoV outbreaks in Catalonia (Spain) between 2017 and 2019. A total of 100 HuNoV outbreaks were notified with the predominance of GII (70%), followed by GI (27%) and mixed GI/GII (3%). Seasonality was observed for GII outbreaks only. The most prevalent genotypes identified were GII.4[P31] Sydney 2012, GII.4[P16] Sydney 2012 and GII.2[P16]. As compared to person-to-person (P/P) transmitted outbreaks, foodborne outbreaks showed significantly higher attack rates and lower duration. The average attack rate was higher in youth hostel/campgrounds compared to nursing homes. Only genotypes GI.4[P4], GII.2[P16], GII.4[P16], GII.4[P31] and GII.17[P17] were consistently detected every year, and only abundance of GII.2[P16] showed a negative trend over time. GII.4 Sydney 2012 outbreaks were significantly associated to nursing homes, while GII.2[P16] and GI.3[P3] were most frequently identified in youth hostel/campgrounds. The average attack rate was significantly higher when comparing GII.2[P16] vs. GI.4[P4], GII.2[P16] vs. GII.4[P31] Sydney 2012, and GII.6[P7] vs. GII.4[P31] Sydney 2012. No correlations were found between genotype and outbreak duration or age of affected individuals.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Adolescente , Infecções por Caliciviridae/epidemiologia , Surtos de Doenças , Gastroenterite/epidemiologia , Genótipo , Humanos , Norovirus/genética , Filogenia , Espanha/epidemiologia
10.
Environ Res ; 208: 112720, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35074352

RESUMO

Wastewater based epidemiology (WBE) offers an overview of the SARS-CoV-2 variants circulating among the population thereby serving as a proper surveillance method. The variant of concern (VOC) Alpha was first identified in September 2020 in the United Kingdom, and rapidly became dominant across Europe. Our objective was to elucidate the Alpha VOC outcompetition rate and identify mutations in the spike glycoprotein (S) gene, indicative of the circulation of the Alpha VOC and/or other variants in the population through wastewater analysis. In the period covered by this study (November 2020-April 2021), forteen wastewater treatment plants (WWTPs) were weekly sampled. The total number of SARS-CoV-2 genome copies per L (GC/L) was determined with a Real-Time qPCR, targeting the N gene. Surveillance of the Alpha VOC circulation was ascertained using a duplex RT-qPCR, targeting and discriminating the S gene. Our results showed that in a period of 6 weeks the Alpha VOC was present in all the studied WWTPs, and became dominant in 11 weeks on average. The outcompetition rates of the Alpha VOC were estimated, and their relationship with different parameters statistically analyzed. The rapid spread of the Alpha VOC was influenced by its initial input and by the previous circulation of SARS-COV-2 in the population. This latter point could be explained by its higher transmissibility, particularly advantadgeous when a certain degree of herd immunity exists. Moreover, the presence of signature mutations of SARS-COV-2 variants were established by deep-sequencing of the complete S gene. The circulation of the Alpha VOC in the area under study was confirmed, and additionally two combinations of mutations in the S glycoprotein (T73A and D253N, and S477N and A522S) that could affect antibody binding were identified.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , SARS-CoV-2/genética , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
11.
Sci Total Environ ; 805: 149877, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818780

RESUMO

Wastewater surveillance for pathogens using reverse transcription-polymerase chain reaction (RT-PCR) is an effective and resource-efficient tool for gathering community-level public health information, including the incidence of coronavirus disease-19 (COVID-19). Surveillance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in wastewater can potentially provide an early warning signal of COVID-19 infections in a community. The capacity of the world's environmental microbiology and virology laboratories for SARS-CoV-2 RNA characterization in wastewater is increasing rapidly. However, there are no standardized protocols or harmonized quality assurance and quality control (QA/QC) procedures for SARS-CoV-2 wastewater surveillance. This paper is a technical review of factors that can cause false-positive and false-negative errors in the surveillance of SARS-CoV-2 RNA in wastewater, culminating in recommended strategies that can be implemented to identify and mitigate some of these errors. Recommendations include stringent QA/QC measures, representative sampling approaches, effective virus concentration and efficient RNA extraction, PCR inhibition assessment, inclusion of sample processing controls, and considerations for RT-PCR assay selection and data interpretation. Clear data interpretation guidelines (e.g., determination of positive and negative samples) are critical, particularly when the incidence of SARS-CoV-2 in wastewater is low. Corrective and confirmatory actions must be in place for inconclusive results or results diverging from current trends (e.g., initial onset or reemergence of COVID-19 in a community). It is also prudent to perform interlaboratory comparisons to ensure results' reliability and interpretability for prospective and retrospective analyses. The strategies that are recommended in this review aim to improve SARS-CoV-2 characterization and detection for wastewater surveillance applications. A silver lining of the COVID-19 pandemic is that the efficacy of wastewater surveillance continues to be demonstrated during this global crisis. In the future, wastewater should also play an important role in the surveillance of a range of other communicable diseases.


Assuntos
COVID-19 , Pandemias , Humanos , Estudos Prospectivos , RNA Viral , Reprodutibilidade dos Testes , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
12.
Environ Sci Technol ; 55(17): 11756-11766, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34397216

RESUMO

Since its first identification in the United Kingdom in late 2020, the highly transmissible B.1.1.7 variant of SARS-CoV-2 has become dominant in several countries raising great concern. We developed a duplex real-time RT-qPCR assay to detect, discriminate, and quantitate SARS-CoV-2 variants containing one of its mutation signatures, the ΔHV69/70 deletion, and used it to trace the community circulation of the B.1.1.7 variant in Spain through the Spanish National SARS-CoV-2 Wastewater Surveillance System (VATar COVID-19). The B.1.1.7 variant was detected earlier than clinical epidemiological reporting by the local authorities, first in the southern city of Málaga (Andalucía) in week 20_52 (year_week), and multiple introductions during Christmas holidays were inferred in different parts of the country. Wastewater-based B.1.1.7 tracking showed a good correlation with clinical data and provided information at the local level. Data from wastewater treatment plants, which reached B.1.1.7 prevalences higher than 90% for ≥2 consecutive weeks showed that 8.1 ± 2.0 weeks were required for B.1.1.7 to become dominant. The study highlights the applicability of RT-qPCR-based strategies to track specific mutations of variants of concern as soon as they are identified by clinical sequencing and their integration into existing wastewater surveillance programs, as a cost-effective approach to complement clinical testing during the COVID-19 pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Águas Residuárias
13.
Water Res ; 202: 117435, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34330027

RESUMO

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is shed in the feces of infected people. As a consequence, genomic RNA of the virus can be detected in wastewater. Although the presence of viral RNA does not inform on the infectivity of the virus, this presence of genetic material raised the question of the effectiveness of treatment processes in reducing the virus in wastewater and sludge. In this work, treatment lines of 16 wastewater treatment plants were monitored to evaluate the removal of SARS-CoV-2 RNA in raw, processed waters and sludge, from March to May 2020. Viral RNA copies were enumerated using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) in 5 different laboratories. These laboratories participated in proficiency testing scheme and their results demonstrated the reliability and comparability of the results obtained for each one. SARS-CoV-2 RNA was found in 50.5% of the 101 influent wastewater samples characterized. Positive results were detected more frequently in those regions with a COVID-19 incidence higher than 100 cases per 100,000 inhabitants. Wastewater treatment plants (WWTPs) significantly reduced the occurrence of virus RNA along the water treatment lines. Secondary treatment effluents showed an occurrence of SARS-CoV-2 RNA in 23.3% of the samples and no positive results were found after MBR and chlorination. Non-treated sludge (from primary and secondary treatments) presented a higher occurrence of SARS-CoV-2 RNA than the corresponding water samples, demonstrating the affinity of virus particles for solids. Furthermore, SARS-CoV-2 RNA was detected in treated sludge after thickening and anaerobic digestion, whereas viral RNA was completely eliminated from sludge only when thermal hydrolysis was applied. Finally, co-analysis of SARS-CoV-2 and F-specific RNA bacteriophages was done in the same water and sludge samples in order to investigate the potential use of these bacteriophages as indicators of SARS-CoV-2 fate and reduction along the wastewater treatment.


Assuntos
COVID-19 , Águas Residuárias , Humanos , RNA Viral , Reprodutibilidade dos Testes , SARS-CoV-2 , Esgotos
14.
Virulence ; 12(1): 1174-1185, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33843464

RESUMO

Hepatitis A is an acute infection of the liver, which is mostly asymptomatic in children and increases the severity with age. Although in most patients the infection resolves completely, in a few of them it may follow a prolonged or relapsed course or even a fulminant form. The reason for these different outcomes is unknown, but it is generally accepted that host factors such as the immunological status, age and the occurrence of underlaying hepatic diseases are the main determinants of the severity. However, it cannot be ruled out that some virus traits may also contribute to the severe clinical outcomes. In this review, we will analyze which genetic determinants of the virus may determine virulence, in the context of a paradigmatic virus in terms of its genomic, molecular, replicative, and evolutionary features.


Assuntos
Vírus da Hepatite A , Hepatite A , Criança , Vírus da Hepatite A/genética , Humanos , Virulência
15.
Genome Biol Evol ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33914886

RESUMO

Codon bias is common to all organisms and is the result of mutation, drift, and selection. Selection for the efficiency and accuracy of translation is well recognized as a factor shaping the codon usage. In contrast, fewer studies report the control of the rate of translation as an additional selective pressure influencing the codon usage of an organism. Experimental molecular evolution using RNA virus populations is a powerful tool for the identification of mechanisms underlying the codon bias. Indeed, the role of deoptimized codons on the cotranslational folding has been proven in the capsids of two fecal-orally transmitted picornaviruses, poliovirus, and the hepatitis A virus, emphasizing the role of the frequency of codons in determining the phenotype. However, most studies on virus codon usage rely only on computational analyses, and experimental studies should be encouraged to clearly define the role of selection on codon evolution.


Assuntos
Uso do Códon , Biossíntese de Proteínas , Capsídeo , Códon/genética , Evolução Molecular
16.
Front Microbiol ; 12: 642267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679679

RESUMO

The available cell-adapted hepatitis A virus (HAV) strains show a very slow replication phenotype hampering the affordable production of antigen. A fast-growing strain characterized by the occurrence of mutations in the internal ribosome entry site (IRES), combined with changes in the codon composition has been selected in our laboratory. A characterization of the IRES activity of this fast-growing strain (HM175-HP; HP) vs. its parental strain (HM175; L0) was assessed in two cell substrates used in vaccine production (MRC-5 and Vero cells) compared with the FRhK-4 cell line in which its selection was performed. The HP-derived IRES was significantly more active than the L0-derived IRES in all cells tested and both IRES were more active in the FRhK-4 cells. The translation efficiency of the HP-derived IRES was also much higher than the L0-derived IRES, particularly, in genes with a HP codon usage background. These results correlated with a higher virus production in a shorter time for the HP strain compared to the L0 strain in any of the three cell lines tested, and of both strains in the FRhK-4 cells compared to Vero and MRC-5 cells. The addition of wortmannin resulted in the increase of infectious viruses and antigen in the supernatant of FRhK-4 infected cells, independently of the strain. Finally, the replication of both strains in a clone of FRhK-4 cells adapted to grow with synthetic sera was optimal and again the HP strain showed higher yields.

17.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33483313

RESUMO

Two large wastewater treatment plants (WWTP), covering around 2.7 million inhabitants, which represents around 85% of the metropolitan area of Barcelona, were sampled before, during, and after the implementation of a complete lockdown. Five one-step reverse transcriptase quantitative PCR (RT-qPCR) assays, targeting the polymerase (IP2 and IP4), the envelope (E), and the nucleoprotein (N1 and N2) genome regions, were employed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA detection in 24-h composite wastewater samples concentrated by polyethylene glycol (PEG) precipitation. SARS-CoV-2 was detected in a sewage sample collected 41 days ahead of the declaration of the first COVID-19 case. The evolution of SARS-CoV-2 genome copies in wastewater evidenced the validity of water-based epidemiology (WBE) to anticipate COVID-19 outbreaks, to evaluate the impact of control measures, and even to estimate the burden of shedders, including presymptomatic, asymptomatic, symptomatic, and undiagnosed cases. For the latter objective, a model was applied for the estimation of the total number of shedders, evidencing a high proportion of asymptomatic infected individuals. In this way, an infection prevalence of 2.0 to 6.5% was figured. On the other hand, proportions of around 0.12% and 0.09% of the total population were determined to be required for positive detection in the two WWTPs. At the end of the lockdown, SARS-CoV-2 RNA apparently disappeared in the WWTPs but could still be detected in grab samples from four urban sewers. Sewer monitoring allowed for location of specific hot spots of COVID-19, enabling the rapid adoption of appropriate mitigation measures.IMPORTANCE Water-based epidemiology (WBE) is a valuable early warning tool for tracking the circulation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among the population, including not only symptomatic patients but also asymptomatic, presymptomatic, and misdiagnosed carriers, which represent a high proportion of the infected population. In the specific case of Barcelona, wastewater surveillance anticipated by several weeks not only the original COVID-19 pandemic wave but also the onset of the second wave. In addition, SARS-CoV-2 occurrence in wastewater evidenced the efficacy of the adopted lockdown measures on the circulation of the virus. Health authorities profited from WBE to complement other inputs and adopt rapid and adequate measures to mitigate the effects of the pandemic. For example, sentinel surveillance of specific sewers helped to locate COVID-19 hot spots and to conduct massive numbers of RT-PCR tests among the population.


Assuntos
COVID-19/virologia , Evolução Molecular , SARS-CoV-2/genética , Vigilância de Evento Sentinela , Águas Residuárias/virologia , Infecções Assintomáticas/epidemiologia , COVID-19/epidemiologia , Cidades , Genoma Viral , Humanos , Prevalência , Espanha/epidemiologia , Eliminação de Partículas Virais , Instalações de Eliminação de Resíduos
18.
Environ Int ; 147: 106326, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33340987

RESUMO

Given the widespread concern but general lack of information over the possibility of SARS-CoV-2 infection in public transport, key issues such as passenger personal hygiene, efficient air circulation systems, and the effective disinfection of frequently touched surfaces need to be evaluated to educate the public and diminish the risk of viral transmission as we learn to live with the ongoing pandemic. In this context we report on a study involving the collection of 99 samples taken from inside Barcelona buses and subway trains in May to July 2020. From this sample group 82 (58 surface swabs, 9 air conditioning (a/c) filters, 3 a/c dust, 12 ambient air) were selected to be analysed by RT-PCR for traces of the SARS-CoV-2 virus. Thirty of these selected samples showed evidence for one or more of 3 target RNA gene regions specific for this virus (IP2, IP4, E). Most (24) of these 30 samples showed positivity for only 1 of the 3 RNA targets, 4 samples yielded 2 targets, and 2 samples provided evidence for all 3 targets. RNA remnants were more common in surface swabs from support bars (23 out of 58) than in ambient air inside the vehicles (3 out of 12), with relatively higher concentrations of viral RNA fragments in buses rather than in trains. Whereas subway train a/c filters examined were all virus-free, 4 of the 9 bus a/c filter/dust samples yielded evidence for viral RNA. After nocturnal maintenance and cleaning most buses initially yielding positive results subsequently showed elimination of the RT-PCR signal, although signs of viral RNA remained in 4 of 13 initially positive samples. The presence of such remnant viral traces however does not demonstrate infectivity, which in the present study is considered unlikely given the fragmentary nature of the gene targets detected. Nevertheless, best practice demands that close attention to ventilation systems and regular vehicle disinfection in public transport worldwide need to be rigorously applied to be effective at eliminating traces of the virus throughout the vehicle, especially at times when COVID-19 cases are peaking. Additionally, infectivity tests should be implemented to evaluate the efficiency of disinfection procedures to complement the information resulting from RT-PCR analysis. Modelling the probability of infection whilst travelling in buses under different scenarios indicates that forced ventilation greatly reduces the risk.


Assuntos
COVID-19 , Ferrovias , Humanos , Veículos Automotores , Pandemias , RNA Viral , SARS-CoV-2
19.
Viruses ; 12(12)2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266188

RESUMO

Norovirus infections are a leading cause of acute gastroenteritis outbreaks worldwide and across all age groups, with two main genogroups (GI and GII) infecting humans. The aim of our study was to investigate the occurrence of norovirus in saliva samples from individuals involved in outbreaks of acute gastroenteritis in closed and semiclosed institutions, and its relationship with the virus strain, virus shedding in stool, the occurrence of symptoms, age, and the secretor status of the individual. Epidemiological and clinical information was gathered from norovirus outbreaks occurring in Catalonia, Spain during 2017-2018, and stool and saliva samples were collected from affected and exposed resident individuals and workers. A total of 347 saliva specimens from 25 outbreaks were analyzed. Further, 84% of individuals also provided a paired stool sample. For GII infections, norovirus was detected in 17.9% of saliva samples from symptomatic cases and 5.2% of asymptomatic individuals. Positivity in saliva occurred in both secretors and nonsecretors. None of the individuals infected by norovirus GI was positive for the virus in saliva. Saliva positivity did not correlate with any of the studied symptoms but did correlate with age ≥ 65 years old. Individuals who were positive in saliva showed higher levels of virus shedding in stool. Mean viral load in positive saliva was 3.16 ± 1.08 log10 genome copies/mL, and the predominance of encapsidated genomes was confirmed by propidium monoazide (PMA)xx-viability RTqPCR assay. The detection of norovirus in saliva raises the possibility of oral-to-oral norovirus transmission during the symptomatic phase and, although to a lesser extent, even in cases of asymptomatic infections.


Assuntos
Infecções por Caliciviridae/diagnóstico , Infecções por Caliciviridae/virologia , Gastroenterite/diagnóstico , Gastroenterite/virologia , Norovirus , Doença Aguda , Doenças Assintomáticas , Infecções por Caliciviridae/epidemiologia , Surtos de Doenças , Fezes/virologia , Feminino , Gastroenterite/epidemiologia , Genótipo , Humanos , Masculino , Norovirus/genética , Norovirus/isolamento & purificação , RNA Viral , Saliva/virologia , Análise de Sequência de DNA , Carga Viral , Eliminação de Partículas Virais
20.
Function (Oxf) ; 1(1): zqaa002, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33215159

RESUMO

Emerging studies increasingly demonstrate the importance of the throat and salivary glands as sites of virus replication and transmission in early COVID-19 disease. SARS-CoV-2 is an enveloped virus, characterized by an outer lipid membrane derived from the host cell from which it buds. While it is highly sensitive to agents that disrupt lipid biomembranes, there has been no discussion about the potential role of oral rinsing in preventing transmission. Here, we review known mechanisms of viral lipid membrane disruption by widely available dental mouthwash components that include ethanol, chlorhexidine, cetylpyridinium chloride, hydrogen peroxide, and povidone-iodine. We also assess existing formulations for their potential ability to disrupt the SARS-CoV-2 lipid envelope, based on their concentrations of these agents, and conclude that several deserve clinical evaluation. We highlight that already published research on other enveloped viruses, including coronaviruses, directly supports the idea that oral rinsing should be considered as a potential way to reduce transmission of SARS-CoV-2. Research to test this could include evaluating existing or specifically tailored new formulations in well-designed viral inactivation assays, then in clinical trials. Population-based interventions could be undertaken with available mouthwashes, with active monitoring of outcome to determine efficacy. This is an under-researched area of major clinical need.


Assuntos
COVID-19 , Humanos , Antissépticos Bucais/farmacologia , SARS-CoV-2 , Clorexidina , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...